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Abstract—This thesis presents BrockportGPT, an advanced
institutional chatbot developed for the SUNY Brockport com-
munity by leveraging large language models (LLMs). Our ap-
proach integrates Retrieval-Augmented Generation (RAG), fine-
tuning techniques, and a custom-built transformer model. The
methodology involved extensive data collection through web
scraping, generating synthetic question-answer pairs using GPT-
4, and employing various retrieval strategies, including semantic
search and reranking. Additionally, a question-topic classification
system was implemented to enhance response relevance. The
results demonstrate the effectiveness of both RAG and the
finetuned model, each excelling in different aspects of query
handling. BrockportGPT addresses the limitations of general-
purpose LLMs in specialized, closed-domain environments by
providing accurate and contextually relevant information. This
research underscores the potential of LLMs in educational
settings and offers a replicable model for other institutions aiming
to enhance their information dissemination processes.

Index Terms—Closed-domain question answering, institutional
chatbot, Large Language Models (LLMs)

I. INTRODUCTION

The field of Natural Language Processing (NLP) has wit-
nessed transformative advancements with the advent of Large
Language Models (LLMs) such as GPT-4 [32], LLaMA [48]
[47], and Claude [3]. These models, capable of generating
human-like text and understanding complex contexts, repre-
sent the pinnacle of current AI capabilities. However, their
effectiveness often diminishes when applied to specialized,
dynamically changing environments. This is particularly ev-
ident in niche areas such as institutional question answering,
where questions like “Does SUNY Brockport offer an MS in
Accounting?” frequently stump even the most sophisticated
general-purpose models.

To bridge this gap, this thesis introduces BrockportGPT, a
chatbot custom-built to address the unique information needs
of SUNY Brockport’s faculty and students. By integrating
closed-domain question answering techniques, BrockportGPT
aims to offer accurate and reliable information specific to the
institutional context, thereby overcoming the limitations faced
by broader LLM applications. For the purpose of reproducibil-
ity and further research, all models, datasets, and the code
developed as part of this project are available on our GitHub
repository and HuggingFace. Links to these resources can be
found at GitHub and HuggingFace.

The surge in popularity of tailored chatbot applications
reflects a broader trend towards personalizing digital inter-
action within specific communities. Our approach leverages
a blend of NLP techniques, including a vanilla sequence-to-
sequence [42] encoder-decoder transformer model [50], fine-
tuning of the open-source LLM LLaMA [48], and the use of
Retrieval Augmented Generation (RAG) [23]. This research is
driven by two primary questions: the feasibility of developing
an institutional chatbot and the determination of the most
effective methodology for such a development.

With the recent growth in Machine Learning (ML) and
Deep Learning (DL) technologies, fueled by vast amounts of
data and significant computational power, there is a unique
opportunity to create specialized tools that meet the specific
needs of individual communities. This work not only explores
adaptations of foundational models to specialized tasks but
also critically evaluates their practical implementation in the
educational sector, addressing both their potential and limita-
tions.

By developing BrockportGPT, we aims to demonstrate the
practical benefits and potential of closed-domain question
answering systems tailored to specific institutional needs. The
contributions of this work extend beyond the SUNY Brockport
community, providing insights and methodologies that can be
applied to similar educational and institutional settings.

II. BACKGROUND

A. Language Modeling

The evolution of neural networks into sophisticated lan-
guage models began with the application of Recurrent Neural
Networks (RNNs). RNNs were designed to handle sequential
data by maintaining a hidden state that captures information
from previous time steps [13]. This architecture set the foun-
dation for subsequent developments in processing sequences,
including language modeling. However, RNNs struggled with
capturing long-range dependencies, primarily due to the van-
ishing and exploding gradient problem, where gradients can
become either too small or too large during training [20].

To mitigate these issues, variants such as Long Short-Term
Memory (LSTM) networks [21] and Gated Recurrent Units
(GRUs) [9] were introduced. Despite these advancements,
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LSTMs and GRUs still face challenges in capturing very long-
range dependencies, as their reliance on sequential processing
limits efficiency and scalability.

The introduction of the transformer architecture marked a
pivotal shift in model design [50]. At the core of the trans-
former architecture is self-attention, which enables the model
to capture long-range dependencies more effectively than
RNNs and their variants. Additionally, its ability to process
input in parallel significantly improved both efficiency and
effectiveness. Following the development of the transformer
came the generative pre-trained transformer (GPT), which
improved task-agnostic performance by training a transformer
in an unsupervised manner prior to additional supervised
training [35].

The GPT strategy has led to the success of subsequent
“GPT-n” models, including GPT-2, GPT-3, and GPT-4 [36]
[6] [32]. These models have inspired other competitive LLMs
such as LLaMA, Gemini, and others [48] [47] [44] [2]. From
their pre-training step, LLMs can be thought of as generic text
generators. To make them useful, most LLMs undergo some
form of instruction tuning and Reinforcement Learning from
Human Feedback (RLHF) after their pre-training step [33]
[8]. This combination of pre-training, instruction tuning, and
RLHF is the fundamental formula of present-day LLMs and
is what users interact with through platforms like OpenAI’s
ChatGPT, Anthropic’s Claude, and Google Gemini.

B. Efficiency Improvements

While the recent growth of LLMs can be attributed to their
architecture, their success heavily relies on the scale of their
training data and computational resources. This dependency
creates a high barrier to entry, making the adaptation of LLMs
across different domains challenging. Therefore, efficiency in
training and deploying LLMs has become a critical area of
recent research.

One major advancement in improving efficiency is the
use of quantization techniques. These techniques reduce the
memory requirements of LLMs by lowering the precision of
the model weights, typically from 32-bit floating point to 4-bit
integers, with minimal impact on performance [10] [14] [15].

In addition to quantization, efficient fine-tuning approaches
like Low-Rank Adaptation (LoRA) have been developed.
LoRA enables efficient tuning of pre-trained models by up-
dating smaller, low-rank matrices during training instead of
directly updating entire layers [22]. This approach significantly
reduces the computational cost associated with fine-tuning.
Quantized versions of LoRA, such as QLoRA and LoftQ,
further enhance this efficiency by combining quantization with
low-rank adaptation [11] [24]. Subsequent improvements like
LoRA+ and ReLoRA continue to advance the field, making
LLMs more computationally efficient and accessible both
during training and inference [19] [26].

These strategies represent significant strides towards reduc-
ing the computational barriers associated with LLMs, enabling
their broader application across various domains, and making

advanced language models more accessible and practical to
deploy.

C. Adaptation to Specific Tasks

Recently, fine-tuning open-source LLMs has demonstrated
significant potential. Models like GPT4ALL [1], Alpaca [43],
and WizardLM [54], which fine-tune LLaMA [48] [47] models
with specialized datasets, can further improve overall perfor-
mance.

One notable example is PMC-LLaMA, which fine-tunes
LLaMA using biomedical academic papers, medical textbooks,
conversational dialogue, and more. This process significantly
enhances PMC-LLaMA’s performance, even surpassing Chat-
GPT in medical contexts [52].

Coding has been another major application for LLMs,
with examples such as Codex [7], GitHub Copilot [16], and
Code LLaMA [40] leading the state-of-the-art. Code LLaMA
specifically fine-tunes LLaMA-2 using up to 1 trillion tokens,
significantly improving its coding capabilities, as demonstrated
by its impressive benchmark results.

As the world continues to adopt LLMs in different fields, the
number of applications increases. Other examples include text-
to-SQL for simplified data querying [41], improved text re-
trieval [27] and enhancing LLaMA’s performance in sequence
and token classification tasks [25], among countless others.

This strategy of fine-tuning a foundational model like
LLaMA for improved performance in specialized contexts lays
the groundwork for the fine-tuning techniques used in this
work to enhance closed-domain question answering perfor-
mance.

D. Closed-Domain Question Answering

Given the success of finetuning LLMs for specific tasks, our
goal is to apply similar techniques for question answering in
a closed domain, or to do with specific topics. An institutional
chatbot is a part of this group, since questions about an
institution are limited in scope. This is an ongoing area of
research with common approaches being finetuning like how
LLMs are adopted to specific tasks, and through Retrieval
Augmented Generation (RAG), which offers a simpler method
for closed-domain question answering [23].

Given the success of fine-tuning LLMs for specific tasks, we
aim to apply similar techniques to question answering within a
closed domain. Institutional chatbots, such as those designed
for universities, are ideal candidates for this approach since
their queries are limited to specific, predefined topics. This fo-
cused nature of questions allows for more targeted and efficient
fine-tuning. In our work, we compare the effectiveness of fine-
tuning with another prevalent method: Retrieval Augmented
Generation (RAG). RAG enhances the system by integrating
an information retrieval step prior to generating responses,
offering a streamlined and effective solution for closed-domain
environments [23]. By evaluating these approaches indepen-
dently, we aim to determine the most effective strategy for
improving question answering performance in closed-domain
settings.



Fig. 1. Web scraping diagram

RAG works by augmenting the results of an LLM with an
information retrieval (IR) step prior to response generation.
The cornerstone of any successful RAG implementation lies
in its retrieval mechanism. Recently, semantic search has
gained popularity for this task. Unlike traditional keyword-
based search, semantic search queries the meaning of the infor-
mation by creating vector representations and using functions
like cosine similarity to measure similarity. Early versions
of this functionality include latent semantic indexing [34]
and word2vec [28]. More recently, contrastive, unsupervised
training methods have become the state-of-the-art for creating
embedding models [30]. By improving the effectiveness of
IR, RAG becomes more capable of answering complex user
queries. While RAG has become a widely applied technique
in industry, with many companies leveraging it for practical
applications, there is relatively less published academic work
on the subject.

The strategies discussed throughout this review lay the
groundwork for the closed-domain question answering tech-
niques used in this work. Our aim is to develop an institutional
chatbot, BrockportGPT, tailored specifically for the SUNY
Brockport community. This next section details the method-
ological approach employed to achieve this objective.

III. METHODOLOGY

Like most institutions, there does not currently exist a
chatbot of this kind at SUNY Brockport. Accordingly, our
methodology covers the complete end-to-end process of creat-
ing a closed domain chatbot. This includes data collection and
preparation before any closed domain techniques are applied.
After discussing the relevant datasets created, we will discuss
three strategies to make the chatbot: sequence-to-sequence
modeling from scratch, finetuning a pre-trained LLM, and
RAG.

A. Data Collection and Preparation

Data is the cornerstone to any successful application in ML.
The most accessible and concentrated place for information
relevant to this project is the SUNY Brockport website, which
contains information about admissions, financial aid, academic

departments, and much more. Subsequently, a decision was
made to use the SUNY Brockport website as the sole place for
data collection. As a result, web scraping must be performed.

This section aims to address the process of web scraping and
data cleaning. Additionally, we will discuss synthetic question
generation, which is a crucial component to the BrockportGPT
project.

1) Web Scraping: Web scraping is the process of extracting
data from a website. A script was developed to manage this
process. Starting at the SUNY Brockport website base URL
the script fetches the webpage and stores it. The stored web-
page is then parsed for references to any other webpage. For
each of these references a full URL is constructed. Using this
set of URLs, for each new URL discovered their corresponding
webpage is fetched and stored. This process repeats until no
new URLs are found. This process is illustrated in Figure 1.
Each iteration of the process is treated as a layer of depth. The
results used throughout this paper are recorded in December
2023, which scraped 4,573 webpages and stopped at depth 10
after 6 hours.

Following proper procedures around web scraping is ethi-
cally and practically important. Two steps are taken towards
this goal in this project. Those are: abiding by robots.txt files
and adding a timer between requests when scraping to avoid
overwhelming the server. Firstly, the robots.txt file is a part
of any website with the goal of defining disallowed places
for agents to visit. It exists to prevent overloading the server
and keep some parts of the website private. It is a “do not
enter” sign for web robots. While the robots.txt file will not
restrict access, it is best practice to abide by it. Secondly, a
timer between requests is added. The timer used is randomly
selected from a uniform distribution between 1 and 3 seconds.
This significantly reduces the load on the website, ensuring its
accessibility to others whilst scraping. Removing this timer
could take down the website, acting as a denial-of-service
attack. Alternatively, it could result in an IP ban targeting the
scraping script which is disruptive to our scraping process.

One challenge with data collection in this project is the con-
tinuously evolving nature of information. While the results are
relevant to December 2023, in a live system we acknowledge
that continuously updating the dataset is important. However,
for our purposes, a static dataset is acceptable.

2) Data Cleaning: Having a cleaned data is necessary for
a well performing system in any facet of ML. In this section
we will discuss the cleaning process with a focus on text
extraction and webpage filtering. The goal of this section is to
craft a dataset that is both relevant and data rich. Towards that
end, various decisions are made to omit certain information
that we deem irrelevant to most users. Firstly, the data must
be processed through text extraction.

In the web scraping process discussed prior, webpages
themselves are fetched and stored. However, in their raw form
these webpages offer little to no useful information. This is
primarily because they are HTML files cluttered with buttons,
images, dropdowns, etc. To make these files useful, they are
parsed for their text contents. To facilitate this, a decision was



Fig. 2. Showcase of removed irrelevant data. Left is a 2024 academic calendar. Right is a similar academic calendar from 2010. This shows how similar
webpages can look whilst containing quite different information.

made to use Trafilatura [4], a fully featured Python library built
for extracting text off various web formats. Using Trafilatura,
for each webpage fetched in the prior step, its text is extracted
and stored. Once the text has been extracted, we perform
rudimentary data cleaning.

This cleaning step includes deduplication along all axes,
removal of failed requests according to status code, and the
application of the following static filters aiming to exclude
irrelevant data: professor webpages, transfer credit details, and
archives. Discussing each of these, professor webpages are
removed to contribute towards the data richness of our dataset.
On the SUNY Brockport website, it is exceptionally rare to
find a professor who uses their webpage. Primarily, these are
blank spaces containing only a headshot, name, and email.
Considering this, these webpages are not conducive to a data
rich dataset, hence their removal. Transfer credits and archives
are removed for a separate reason, primarily concerning ease
of use. As we will discuss later, this dataset will be used for
text retrieval. As such, having identifiable, distinct information
is key. Unfortunately, as illustrated in Figure 2, these sections
have large masses of information presented nearly identically.
This makes text retrieval considerably more difficult. This
pattern prevails generalizes across these categories. Impor-
tantly, this information is not specifically desired either. With
misinformation being such a risk for this type of project, early
on a decision was made to remove portions of the website like
this entirely.

In addition to previously mentioned filtering mechanisms,
any webpage whose extracted text is less than 275 characters is
removed. This is specifically towards the goal of promoting an
information rich dataset. Crucially, the character limit filter is
not very abrasive, as only eighty webpages as removed during
this step.

These steps are crucial in maintaining the integrity and
relevance of the data, making it more actionable and focused.
After their application, our original dataset of 4,573 webpages
shrunk to 2,683 webpages. We find the distribution of web-
pages is heavily skewed towards academics, support, school

Fig. 3. System and user prompt for generating synthetic questions

policies, and campus life, which themselves make up for 2,293
of the webpages in the dataset. Next, we begin the discussion
on artificial data generation.

3) Artificial Data Generation: A key component of any
chatbot application is that it can understand questions. How-
ever, so far, the dataset only contains text from the SUNY
Brockport website. While such a dataset is adequate for
Retrieval Augmented Generation (RAG), it is insufficient to
train a question-answering chatbot. Considering this, the goal
of this section is to create a synthetically generated dataset
that contains question-answer (QA) pairs for model training.

Using synthetically generated questions is a recent idea
demonstrated in Alpaca [43], GPT4ALL [1], and more. The
idea is to use a strong general purpose LLM like GPT-4
to generate questions and answers. Using these generated
questions, it is possible to train a smaller, less capable model to
perform a similar task. In this project, the generated questions
must be relevant to SUNY Brockport. This necessitates some
outside knowledge since even a strong general purpose LLM
does not have an expertise sufficient to generate questions on
its own. For this task, we leverage the dataset discussed prior
with LLMs GPT-3.5 Turbo and GPT-4 Turbo.

The prompts used for synthetic question generation are
described in Figure 3. These prompts are specifically crafted to



Fig. 4. Example of GPT-4 Turbo generated QA-pairs

accommodate gpt-3.5-1106-preview and gpt-4-1106-preview
in JSON mode, so they return responses that are easy to parse.
The system prompt is designed to give general instructions to
the model and inform it what the high-level task is. The system
prompt remains constant throughout generation, while the user
prompt is what changes based on the content. Using this
prompting style and the cleaned dataset discussed previously,
for each webpage in the dataset GPT-3.5 Turbo and GPT-4
Turbo are prompted, replacing ‘content’ with the extracted text
contents. The models are used with default parameters other
than temperature = 0. Temperature is a sampling technique
that controls the randomness of model output. In cases where
accuracy is favored over creative flair lower temperature is
preferred, with temperature = 0 being the least random option.

The resulting datasets contain 12,732 and 11,582 QA pairs
for GPT-3.5 Turbo and GPT-4 Turbo, respectively. Three
examples of GPT-4 Turbo generated questions are listed in
Figure 4. We find the questions are high quality, which is
crucial for the success of the methods leveraging this dataset.

Unfortunately, generating synthetic datasets can get expen-
sive. On our December 2023 run, the GPT-3.5 Turbo generated
dataset cost $4.36, and the GPT-4 Turbo generated dataset cost
$62.64. Expectantly, we find that on average GPT-4 Turbo
creates substantially higher quality questions than GPT-3.5
Turbo, most notably in their length and complexity. Still, the
GPT-3.5 Turbo generated questions are useful to engineer the
prompt for GPT-4 Turbo, or when dealing with a situation
where quantity of questions is more important than quality.

4) Conclusion: The data collection and preparation
methodologies outlined in this section form the backbone
of the BrockportGPT project. Despite the diligence kept
throughout the dataset creation, there is still opportunity for
future innovation and exploration. Specifically, an area for
future enhancement is accounting for webpage imbalance
in question-answer generation. For instance, questions about
admissions and financial aid, though comprising only 3.22%
of our dataset, may be of higher relevance to users. Adjusting
the dataset to align with the inquiries of users more closely
can significantly enhance the relevance and utility of Brock-
portGPT.

B. Building the Scratch Model

This section explores the motivation, architecture, and inher-
ent challenges of developing a model from scratch. In neural
networks, the configuration of weights within the network
fundamentally determines its functionality and performance.
Unlike pre-trained models that begin with weights adjusted
through extensive prior training on vast datasets, thus ex-
hibiting known performance characteristics, the scratch model
starts with weights that are randomly initialized.

Within the realm of text generation, which question answer-
ing is a part of, in most cases a model trained from scratch is
expected to perform worse than its pre-trained counterpart.
This is primarily because state of the art text generation
models continuously pushes the computational barrier of what
is possible. Without the availability of extensive hardware,
which costs millions of dollars, it is exceedingly difficult to
beat the performance of models trained with that extensive
hardware.

Despite this reality, building a model from scratch has some
justification. Most importantly, training a model from scratch
offers a unique perspective into understanding how the overall
model architecture works. Despite having vastly improved
performance, state of the art models are typically similar in
architecture and mainly differ in their training and size. Hence
understanding how the model works is intrinsically beneficial
to understanding and interpreting all the models discussed
in this work. Moving forward, the discussion will focus on
exactly how the scratch model is created.

1) Implementation: To create any model, it is important
to first pick a suitable dataset and model architecture. For
this project, the goal of the scratch model is to directly
answer questions. This is made possible by training the scratch
model using the GPT-4 generated QA dataset previously
discussed. About model architecture, a decision was made
to use an encoder-decoder transformer for the scratch model.
This decision stems from trends within the field demonstrating
the transformer architecture exhibiting excellent performance
particularly within NLP.

Prior to initiating the training loop, the dataset undergoes
standardization. Standardizing the dataset has many benefits to
model training, but most importantly by simplifying the inputs
through standardization, the model is more likely to generalize
across contexts as opposed to overfitting on specifics like
case sensitivity and special characters. Practically, this reduces
variability in the data, which improves performance of the
model.

The exact standardization process used in this work includes
lowercasing all text and removing extraneous special char-
acters. To allow the model to answer grammatically correct
responses, spaces are added around punctuation. This means
punctuation such as “?”and “!” will be represented as their own
tokens in the tokenization step. Finally, a special “[START]”
and “[END]” token is added to the front and back of each
QA-pair respectively. These special characters are crucial to
the model learning when to stop its output.



Fig. 5. Plain text, standardized, and tokenized side by side comparison

Once the dataset is standardized, the dataset undergoes
tokenization. Since neural networks cannot directly read plain
text, a tokenizer facilitates the process of converting the
dataset into numbers which the neural network can read.
There are various tokenizers available, but common choices
include word-level, character-level, and sub-word-level to-
kenizers. Like their name implies, a word-level tokenizer
describes a one-to-one correspondence of word-to-number. For
example, the word “Hello” may map to the number “1”, and
so on with others. A character-level tokenizer works similarly
but assigns individual characters to numbers, e.g., the letter “a”
can map to the number “5”. A sub-word-level tokenizer does a
mixture of both. For example, the word “Seating” may be split
into two tokens, “Seat” and “ing”, each having corresponding
numeric values “2” and “3”. In this case, these sub-words can
be mapped into other words, such as “Seated”, which might be
“Seat” and “ed” while sharing similar tokens. These tokenizers
all have benefits and drawbacks, for instance, the character-
level tokenizer is more susceptible to spelling typos than the
word-level tokenizer, which will rarely, if ever, make spelling
typos. On the other hand, the sub-word-level tokenizer, which
is increasingly common for state-of-the-art models [48] [47]
[6] [32], incurs a debt in complexity. In this work, a decision
was made to utilize a word-level tokenizer. An example of
its usage, alongside our standardization technique is given in
Figure 5.

Alongside the type of tokenizer used, a decision must be
made about the number of tokens to include. Much like stan-
dardization, a subtle goal of tokenization is to further reduce
variability in the model input, again towards the goal of a more
generalized model. A well-known way of accomplishing this
is to learn how many of each token you have in the dataset
and choosing a cut-off point. For instance, the word “the”
may show up one thousand times in the dataset, but the word
“Ferrari” only shows up four times. To prevent overfitting, it
is usually beneficial to remove words like “Ferrari” that do
not show up often.

In this work we limit the vocabulary to the top 5000 tokens.
This gives our model a small vocabulary, but the dataset used
is also relatively small with only ˜11,000 examples. Tokens
which do not fall within this top 5000 limit are replaces
with an “[UNK]”, or unknown, token. Once the text has been
converted to tokens, they are converted into tensors. From
there, each tensor is padded, or appended with zeros, to the
length of the longest sequence in the dataset.

In preparing data for training a transformer model, a neces-
sary step involves the organization of the data into ”context”,
”target in” and ”target out” sequences for the model. These

Fig. 6. Encoded/decoded context/target in/target out

sequences can be categorized easily, demonstrated in Figure
6 the ”context” contains the user question as the model
understands it, and the ”target in” contains the output as it
is being generated – a portion of an answer. The ”target out”
is the ”target in” shifted by one and contains the ground truth
for a given prediction to help in loss computation.

Importantly, the key idea behind this type of text generation
is next-token prediction, i.e., given some text, what is the
most likely token, or word in this case, to appear next. To
do this, the model computes a probability distribution across
all the possible tokens given the input. This distribution can
be sampled from finding the highest probability token. This
is the “target out”, or prediction of the model. Using the
”target out” value previously computed, this process can be
repeated to find the next token. To inform the model of what
it previously predicted, the previously computed ”target out”
value is appended to the ”target in” values, allowing the model
to continue its sequence generation. This process continues
until the model predicts ”[END]” as the “target out” value,
indicating the conclusion of the response, and ending this
process. Since the output depends on previously generated
values, this makes the transformer architecture autoregressive.

The dataset is now fully prepared for training the model,
where the context is inputted into the encoder, and the target
ins are fed to the decoder. In a transformer, the encoder aims to
abstractly represent the input context, while the decoder’s task
is to synthesize this representation with previously generated
outputs to predict the subsequent token. However, this sim-
plification does not entirely capture the complexity within a
transformer, highlighting a broader issue with neural networks:
their lack of interpretability. Interestingly, recent advancements
in LLMs, such as those demonstrated by models like LLaMA
[48] [47] and GPT-n [36] [6] [32], propose eliminating the
encoder altogether, arguing for a streamlined decoder-only
architecture that can enhance performance. While these claims
mark significant shifts in our understanding of transformer
models, the scratch model developed here does not explore
these newer configurations.

One of the intrinsic challenges with autoregressive models
is compounding errors, where an inaccurate prediction early
in the sequence can lead to a cascade of subsequent errors,
significantly affecting the overall quality of the output. A
common approach to this issue during model training is a
technique called Teacher Forcing [51], which replaces the
actual output of the model with the ”teacher” output, or ground
truth of the model. For an example, if the model is prompted
”Knock Knock”, it is expected to respond, ”Who’s there”.



Fig. 7. The Transformer Architecture [50]

However, if the model predicts ”Hello” as the next token,
then the entire response is effectively derailed. Teacher forcing
addresses this by injecting the ground truth response, ”Who’s”
in place of ”Hello” for subsequent predictions, allowing the
model to learn later portions of a response as well. This
typically leads the model to converge faster. Critically, this
style of training can be detrimental during inference, where
ground truth is not available. Due to teacher forcing during
training, the model typically does not learn to correct for its
mistakes, leading to an inconsistency between training and
inference. In the literature, this is known as Exposure Bias
[38]. While there exist algorithms such as Professor Forcing
[18] to counteract exposure bias this work does not explore
them. For simplicity, a decision was made to use teacher
forcing throughout training the scratch model.

TABLE I
MODEL PARAMETERS

Explanation Parameter Value
Dimension of the model dim 512
Number of encoder/decoder layers n layers 6
Number of attention heads n heads 8
Vocabulary size input and output vocab size 5000
Dropout rate dropout 0.1
Batch size batch size 64
Number of Epochs trained epochs 13

The scrach model parameters are given in Table I. These
model parameters concerning size were chosen to follow the

Fig. 8. RAG Diagram

base model described in the original Transformer paper. Future
work may consider optimizing these parameters, which could
lead to significant improvement of the scratch model. Other
parameters, including batch size and number of epochs are
chosen to accommodate both our hardware available and the
model training.

2) Conclusion: Future work may consider implementing
new algorithms mentioned to discuss the shortcomings of the
architecture described throughout this section. We expect these
deficiencies are a result of 1) our relatively small dataset,
2) the max model size we can train, and 3) the model
architecture not being tuned to our specific case. To remedy
such characteristics, scaling the scratch model across various
dimensions such as dataset size, model size, etc. may be
beneficial.

Additionally, on the dataset front there is room for improve-
ment. The GPT-4 generated QA-pair dataset offers satisfactory
performance in general, but the distribution of question topics
in the dataset is unlikely to align with that of question topics
users might be interested in. Focusing on these specific topics,
and further curating the dataset to align with user interests
would certainly improve the practical performance of the
scratch model.

C. Retrieval Augmented Generation (RAG)

This section will discuss RAG, which is a crucial part of
this project. One of the current problems with LLMs is their
lack of explainability. While it is easy to interpret the output
of an LLM, nobody has figured out a way to understand why
that output was chosen. This implies a further problem, that is,
how knowledge within an LLM is stored, and further how it
can be changed. Without an ability to augment the knowledge
of an LLM, it is difficult to apply LLMs to situations where
domain specific knowledge is required. This motivates RAG,
which is a popular strategy to assist LLMs in responding to
user inquiries without changing the underlying model.

The approach RAG takes is to focus on the prompting of or
input to an LLM by retrieving some ground truth text relevant
to the user inquiry. Using the retrieved information, the LLM
is prompted with both that information and the user inquiry
simultaneously. Using this technique illustrated in Figure 8,
the LLM can use the retrieved information to respond to the
user inquiry more appropriately.

For applications that require external knowledge, RAG
has several benefits. Firstly, RAG contributes towards the



Fig. 9. With/without RAG performance comparison

explainability of an overall system. By incorporating retrieval
in the process as a ground truth for the model, there is no
longer a question of what knowledge the LLM has since the
ground truth is the knowledge. This idea is demonstrated in
Figure 9, which compares the results of asking ”what is my
birthday?” both with and without RAG. With RAG, we can
see exactly what information the LLM is using to answer
the question. Conversely, without RAG, the LLM has no
additional information and must rely on its own knowledge.
Since the LLM does not know my birthday, it is unable to
answer. A second benefit of RAG is its simple architecture.
Using retrieval to assist the model in user inquiries, the LLM
itself can remain fixed, which lowers the overall complexity
of the system when compared to alternative approaches like
finetuning.

Despite the simplicity of RAG, implementing a well per-
forming RAG system is difficult. This is because RAG ne-
cessitates a well performing text retrieval system. If the text
retrieval system returns the incorrect ground truth, or even only
partial truth, then the output becomes unreliable. Accordingly,
considerable focus has been placed on text retrieval in this
work.

In the next sections we will discuss three text retrieval
methods: semantic search, semantic search with a reranker
model, and a hybrid retrieval system using semantic and
keyword search. Additionally, we will discuss a question topic
classifier which can be used in conjunction with any of the
three text retrieval methods to enhance their results.

1) Semantic Search: Semantic search aims to identify text
that is semantically similar, rather than relying on exact
keyword matches. This methodology has become increasingly
relevant with the rise of chatbots, as it effectively handles
the wide variation in user queries that may not directly
match text within a database. By focusing on the underlying
meaning of text, semantic search transcends literal word-for-
word searches. It achieves this through embedding models,
which generate abstract representations of text, enabling a
more nuanced and effective search process.

By generating text representations for an entire database, we
can measure similarity using methods like cosine similarity.
This is based on the principle that texts with similar content
are more likely to hold relevant information to one another.
In the RAG process, we assess the similarity between a query
and each database entry, identifying the most closely related
texts. These are then forwarded to the LLM for answering
questions, leveraging the most relevant information available.

Implementing semantic search successfully hinges on the

Fig. 10. Chunking example. First split on “\n\n”, which is not found. Then
on “\n”, which splits the text into two, then “ ”, which further splits the text
into chunks of four. This process continues until the chunks are a suitable
size.

integrity of the underlying dataset. Enhancing the dataset’s ro-
bustness involves processes such as chunking to normalize text
length. This step is vital because the way text is represented
can be influenced by its length, potentially causing skewed
results for queries that significantly differ in length from the
database texts. By standardizing text length, we mitigate the
risk of these anomalies, ensuring more consistent and reliable
search outcomes.

Chunking, while beneficial for standardizing text length,
introduces challenges in information retrieval. This technique
truncates longer texts, which can result in the loss of critical
information, especially in complex texts. This work uses a
chunk size of 350 characters, including a 25-character overlap
between chunks to preserve context continuity. This configu-
ration, typically covering two to three sentences, strikes a bal-
ance between maintaining sufficient information and ensuring
context is not entirely lost, offering an effective compromise
for semantic search tasks.

The dataset leveraged for retrieval purposes is the refined
dataset outlined in Section III-A2. For chunking, the approach
used involves progressively splitting the text based on struc-
tural markers: first by sections (denoted by “\n\n”), then
paragraphs (“\n”), subsequently by spaces (“ ”), and finally,
if necessary, by characters. This iterative process illustrated
in Figure 10 continues until the text segments are reduced
to the predetermined chunk size of 350 characters. This
chunking strategy is designed to keep semantically similar text
together for as long as feasible, reflecting the logical structure
where sections contain closely related information, followed
by paragraphs, and then sentences. To further optimize this
method, there is an additional minimum chunk size of ten
words enforced, ensuring even the smallest chunks maintain a
basic level of comprehensiveness and context.

As illustrated in Figure 11, the chunking process effectively
standardizes the length of text in the dataset. The distribution
before chunking is skewed significantly to the right since
some texts contain thousands of words. After chunking the
distribution is approximately normal.

To prepare the chunked dataset for semantic search, it
is transformed into embeddings using the bge-large-en-v1.5



Fig. 11. Word Count Distribution Before and After Chunking

(BGE) [53] model. Chosen for this task, BGE is a pre-trained
model publicly available and specifically designed for seman-
tic search applications. The selection of BGE was driven by
its outstanding performance in benchmarks targeting general-
purpose text retrieval tasks [29]. This model’s proficiency in
understanding and representing the semantic nuances of text
makes it an ideal choice for enhancing the retrieval capabilities
of our system.

With the BGE model, each text chunk undergoes tok-
enization and is then processed by the model to generate an
embedding—a numerical representation capturing the chunk’s
semantic essence. These embeddings for each chunk are stored
locally, ensuring that later they can be loaded in and used for
retrieval without performing this computation repeatedly.

To perform semantic search, the user’s query is first con-
verted into an embedding using the BGE model, mirroring the
process used for the dataset chunks. This query embedding is
then compared to each chunk’s embedding using cosine sim-
ilarity, generating a score that reflects the similarity between
the query and the chunk. Based on these similarity scores, the
chunks with the highest relevance to the query are selected
and passed to the LLM.

Building on this foundation, the next section will explore
how we can further improve the effectiveness of semantic
search through the integration of a reranker model.

2) Semantic/Rerank Retrieval: Reranking is a widely
adopted strategy across the field of information retrieval. Its
principle is straightforward: initially apply a fast but less
precise method to narrow down the search results, followed
by a reranking phase that improves accuracy at the expense
of efficiency. We focus on the application of cross-encoder
models, a subset of reranker models, to improve text retrieval
in this work. Recent advancements in reranking models [31]
through models such as BERT [12] have achieved state-of-
the-art performance in zero-shot retrieval tasks [45]. In the
following section, we will discuss the technical details of
reranker models and describe our integration of a reranker
model with BrockportGPT.

The distinction between cross-encoder and bi-encoder mod-
els in terms of handling query-document relationships is
clearly illustrated in Figure 12. It is crucial to note that the
foundation of semantic search, the embedding model, is built
upon the bi-encoder architecture. Bi-encoders process queries
and documents independently, generating embeddings that can

Fig. 12. Cross-encoder vs bi-encoder diagram

Fig. 13. Semantic/Rerank flowchart

be efficiently compared for similarity. Alternatively, cross-
encoders evaluate the similarity scores by considering the
query and document as interdependent entities. This method-
ology allows cross-encoders to capture the dynamics between
the query and document, facilitating a deeper understanding
of their interaction. Consequently, using a cross-encoder leads
to more refined and superior performance in practice [39].

The primary inefficiency of the cross-encoder model arises
from the inherent variability of user queries in chatbot inter-
actions. The unpredictability of these queries necessitates that
similarity computations be executed in real-time. For cross-
encoders, this means any incoming inquiry is compared against
each of the 24,901 chunks in the dataset. Even on high-
performance GPUs this computation spans several minutes.
In contrast, the bi-encoder model offers a more efficient
alternative by allowing for the pre-computation and storage of
the database embeddings, making the retrieval process almost
instantaneous.

By combining strategies, we use semantic search to return
only the top fifty results for the re-ranker model to compare.
This process is demonstrated in Figure 13, which leverages the
speed of semantic search with the superior performance of the
re-ranker. The re-ranker model chosen for this project is bge-
reranker-large (BGE-rerank) [53]. Like BGE, the model used
for semantic search, BGE-rerank has impressive performance
[46]. Both BGE and BGE-rerank come from the same family
of models, however each are trained separately on different
data.

Ultimately, using the reranker model should improve per-
formance of text retrieval overall. Additionally, using semantic
search at the base of the approach will dramatically increase
the viability of using the reranker model due to the alleviated
computational drawbacks. Next, we will shift the discussion
to hybrid search, which uses a combination of semantic search
and keyword search to query results.

3) Hybrid Retrieval: Text retrieval has long been a focus
of research, yet the recent surge in semantic search and related



concepts has overshadowed traditional retrieval methods. This
motivates our adoption of Typesense, a robust open-source
search library [49]. Typesense supports several ways to search,
but crucially, it supports hybrid search. Hybrid search com-
bines the best of both worlds by integrating keyword and
semantic approaches to computing similarity. This work will
focus on how varying degrees of focus on keyword search can
improve text retrieval, if at all.

Using Typesense, hybrid search is accomplished using a
weighted sum composed of keyword search and semantic
search similarity results. This computed similarity score is
called a Rank Fusion Score (RFS). The formula is as follows:

RFS = α ∗K + (1− α) ∗ S, α ∈ [0, 1] (1)

In Equation 1, α is the weighting factor: a higher α places
greater importance on keyword search (K), while a lower α
prioritizes the semantic search results. Like prior methods, a
higher rank fusion score indicates a higher degree of similarity
between queries and documents.

For the semantic search component, the model used is
text-embedding-ada-002 from OpenAI. This differs from
BGE, which may introduce additional variability beyond
hybrid search when comparing results. However, both text-
embedding-ada-002 and BGE have strong semantic search
performance.

Overall, the use of hybrid search for text retrieval is
promising. One additional benefit of this approach is its speed.
Keyword search is a quick process, combined with the bi-
encoder model which is also quick makes hybrid search an
overall very efficient approach for text retrieval. Next, we will
discuss question topic classification, which is an approach that
seeks to improve all the text retrieval strategies incorporated
in this work.

4) Question Topic Classifiers: One of the issues with RAG
is if the retrieval system does not return relevant chunks of text,
then the response is doomed. This issue is most pronounced
with large datasets when querying for specific information,
since the proportion of relevant data is much lower than
smaller datasets with general inquiries.

This issue motivates the question topic classifiers built in
this work. The idea is simple, when an inquiry is received,
a model predicts what topic of question it is. Given the
prediction of the model, the text retrieval process is only
performed over a subset of the dataset relevant to that topic.

Fig. 14. URL categorization example.

Categorizing data and labeling is typically a non-trivial task.
Fortunately, we find the SUNY Brockport website is well
organized. Since web scraping is used to collect the dataset,
the information encoded inside the URL of each webpage can
be used to label the data. There are two types of categories

for the topic classifiers: main category, and subcategory. This
is demonstrated in Figure 14, where the main category is the
first subdirectory of the URL, and the second category is a
child subdirectory of a main subdirectory.

TABLE II
NUMBER OF SUBCATEGORIES PER TOPIC

Topic # of Subcategories
academics 59
support 26
live 1
life 12
about 6
alumni 3
scholarships-aid 2
admissions 3
graduate 2
research-foundation 0
library 1
bsg 0

The decision to have a main category and a subcategory is
driven by the layout of the website. As demonstrated in Table
II, on the SUNY Brockport website there are twelve main
categories with the center column showing there are varying
numbers of chunks from the database in each category. The
number of possible subcategories is a category listed in the
furthest right column. These results are interesting since it
is clear not all categories will benefit from a subcategory,
only those where the subcategory label contains meaningful
information.

This leads to the decision of only training a subcategory
model for categories containing at least four possible subcat-
egories. This means that subcategory categorization models
are only trained for the academics, support, life, and about
categories.

Like anything in machine learning, to train a model, data
is required. Recall from section III-A3 the QA-dataset is
generated in batches of five from a single webpage for all
webpages scraped. This implies that for all questions their
respective webpage is the sole source of information. Using
the webpage topic derived from the URL, the question can
inherit the same topic. This underlies the idea used to create
the training set for the question topic classifiers. By labeling
the question topics, the questions themselves are input to the
model and the topic derived from the URL is the output.

This implementation leverages both the GPT-3.5 and GPT-4
generated QA datasets. An unfortunate issue with this dataset
is the uneven distribution of question topics. Since questions
are sampled at a fixed rate per webpage, the distribution
of webpages on the SUNY Brockport mirrors that of the
questions. The result of this is illustrated in Figure 15, where
˜75% of the data falls within only three categories. This makes
modeling difficult, since unbalanced datasets typically will
lead to models failing to generalize.

One common solution to issues like this is oversampling.
Oversampling aims to forcibly balance the dataset by sampling
topics with replacement as needed. In this work a decision
was made to sample exactly three times the average number of



Fig. 15. Distribution of QA topics

questions per topic. In the main classifier this number is 1,935
questions. This means questions from the topic’s academics,
support, live, and life are all unique since there are greater
than 1,935 questions in these categories, and the remaining
topics copy questions in their data. For cases such as library
and bsg, which have the least questions, the questions can
be copied between 15-30x times. Typically oversampling in
this style is not recommended, however, we find performance
improves with significant oversampling as opposed to letting
the dataset remain uneven or lowering the overall number of
questions. Future work may consider different approaches to
this problem, such as generating more questions, or altering
the questions slightly to promote generalization.

TABLE III
TERM-DOCUMENT MATRIX

Sentences the sky is blue red grey
the sky is blue 1 1 1 1 0 0
the sky is grey 1 1 1 0 0 1
the color red is red 1 0 1 0 2 0

Using the dataset, the questions now undergo standardiza-
tion through lowercasing and are further preprocessed using
a bag-of-words (BOW) approach. BOW is a simple pre-
processing approach that deals strictly with the vocabulary and
frequency of text, omitting any regard for position or overall
structure. Take the following example: “the sky is blue”, “the
sky is red”, and “the sky is grey”. Among these texts, there
is the common vocabulary: “the”, “sky”, “is”, “blue”, “red”,
and “grey”. Using this six-word vocabulary, a bag-of-words
approach will define a length six vector for any text and
indicate how many times each word in the vocabulary appears
in the dataset. This idea is illustrated in Table III, where “the
color red is red” contains 1 “the”, 1 “is” and 2 “red”, but
no other text from the vocabulary appears, leaving zeros in
other columns. While simple, the bag-of-words approach is
powerful for basic NLP tasks like classification.

Since each of the topic classifiers are for distinct groups
of data, the classifiers use dynamically computed vocabulary
sizes. It is difficult to use an equal sized vocabulary size in
these cases since too large a vocabulary can promote overfit-
ting, while too small of a vocabulary can promote deficient
performance overall. To rectify these issues, the vocabulary

Fig. 16. Question topic classifier architecture

size is chosen by selecting all words that appear more than
five times in the data.

Using this information, modeling can begin. All the classi-
fiers use an equivalent fully connected neural network archi-
tecture illustrated in Figure 16. The key difference between
them is the size of vocabulary and number of targets. The
number of targets is how many labels there are to predict,
in the case of the main classifier, there are twelve, with the
subcategories differing.

TABLE IV
QUESTION TOPIC CLASSIFIER MODEL PARAMETERS

Parameter Value
Hidden layer dimension 256
Learning rate 1e-4
Dropout rate 0.5
Batch size 32
Early stopping patience 10
Early stopping min delta 0.01

The question classifier model architecture parameters are
given in Table IV. All five models use early stopping based
on validation loss during training, where the best model is
selected by the choosing the lowest validation loss throughout
training. In addition to these parameters, the models are trained
using the Adam optimizer and cross entropy loss.

Once the models are trained, we apply a handmade wrapper
to intelligently facilitate question categorization. One of the
inherent issues to a classification system like this is the risk
of misclassification. For instance, if a question is about the
math department but the classifier predicts and subsequently
routes the question to the biology department data then the



Fig. 17. Overall question classifier integration diagram

response will certainly be incorrect. The adapter developed
aims to address this and ensure the reliability of the system.

One neat way to interpret deep learning models built for
classification is through the output layer of the model. This
layer, once SoftMax has been applied, can be interpreted
as a probability of being any given target. For instance, a
question about math may have a probability of 95% for math,
whereas a question about math and computer science might
be 55/40% respectively. Practically, these probabilities can
also be interpreted as confidence. For simple questions, the
classification model is likely to predict correctly, resulting in
higher probability output. Alternatively, for tough questions,
the model may be split between topics and predict with lower
confidence.

By understanding this, a decision was made to implement
a rule-based system to determine how strictly the topic classi-
fication should be followed, if it should be followed at all. It
works as follows: if the model’s highest probability prediction
falls below a 30% threshold, the model will withhold any
categorization and text retrieval will continue unfiltered. In
cases where the model’s highest probability prediction exceeds
the 30% threshold, the model will select the highest probability
prediction along with any other prediction exceeding 15%
confidence. This method allows the classifier to function as
a soft filter at lower confidence levels, since it will broaden to
include multiple relevant categories. As the model begins to
predict with higher confidence, the filtering becomes a hard
filter, since it will be less likely for any additional prediction
to exceed 15

This process happens for the main categorization model and
the subcategory models. The only difference is the subcate-
gories will only attempt prediction if the main categorization
model predicts their category. For instance, a question like
“Tell me about the math department” is predicted to be under
the academic topic. Since there is a subcategory model for the
academic topic, this process will repeat using the subcategory
model and further predict math as the topic of the question.

The overall system with question topic classification is
demonstrated in Figure 17. By using the classifier, the text
retrieval process is more likely to contain relevant information.
This benefit is most pronounced for highly specific information
that the retrieval methods discussed prior are unlikely to find
on their own. Next, we will transition the discussion away
from text retrieval and towards the end-to-end implementation

Fig. 18. RAG System and User prompts

of RAG.
5) RAG: While RAG has so far been focused on text re-

trieval, it is crucial to ensure a smooth hand-off of information
to the LLM for question answering. There are many LLMs
capable of handling RAG applications, but the most readily
and easily available is GPT-3.5 from OpenAI which exhibits
exceptional performance across the board for general purpose
language modeling.

An important part of utilizing any general-purpose language
model is prompting. The prompt used in this application of
RAG is shown in Figure 18. When prompting GPT-3.5 there
are two types of prompts: system and user. The system prompt
is used to define a role for the model. Since GPT-3.5 is a
general LLM, it needs to be given context about what it is
meant to do in this context. The user prompt is understood
as the user interacting with the system. In the context section,
search results from text retrieval are given, and the question
section is replaced by the user inquiry.

There are six total retrieval strategies possible described in
this work: semantic search, semantic search with a re-ranker
model and Typesense, each with or without the question topic
classifier. In this stage any of these strategies can be used.
This concludes the technical discussion of RAG.

6) Conclusion: Overall, this section has detailed our
methodological exploration in implementing RAG. RAG offers
numerous benefits compared to the other methods discussed,
especially in the see-through nature it provides. The methodol-
ogy outlined here lays the groundwork for future enhancement
in the text retrieval processes.

Future work may consider alternative retrieval strategies
and further improve the datasets used throughout. Preliminary
observations suggest that RAG stands out as our most effective
model in enhancing chatbot performance. A detailed exami-
nation of its performance metrics and comparative analysis
with other models will be discussed further in the results and
discussion section.

D. Finetuned Model

Currently, training state-of-the-art models requires an exor-
bitant amount of compute and time. As ML models continue
to grow as time goes on, especially within NLP, this is a
significant problem for researchers and practitioners hoping
to achieve state-of-the-art performance. This motivates fine-
tuning, which enables further training of pre-existing model
on a specific task for a fraction of the cost. In this work
the goal of finetuning is to create a model suitable for
question answering about SUNY Brockport directly, without
any additional retrieval system.



Fig. 19. Typical training pipeline diagram – high level overview

Fig. 20. LoRA explanation diagram

Typically, finetuning a model involves curating a dataset to
train on, choosing appropriate hyperparameters, and initiating
a training loop. This process is illustrated in Figure 19, which
highlights the various parts of finetuning. Considering this, it is
crucial to pick a suitable pretrained model to ensure the effec-
tiveness of finetuning. Within the realm of text-generation, and
by extension, question-answering, the LLaMA-2 [47] models
have emerged as the go-to choice due to its open-source license
and vastly superior performance relative to competitors. Given
this context, the LLaMA-2 model was selected for fine-tuning
in this work.

There are several variants of LLaMA-2 models, each vary-
ing in their training and size. Regarding their training, there
are two versions of LLaMA-2 model: standard and chat. The
chat models differ from the standard LLaMA model since
they are further trained with supervised fine-tuning (SFT)
and reinforcement learning with human feedback (RLHF)
to align with human preferences for helpfulness and safety.
For most applications, the chat version is preferrable, with
the standard version primarily existing to promote alignment
research within the field. For this work, the selection was made
to use the LLaMA-2 chat version.

Regarding the size, or number of parameters in LLaMA-2
models there are 7B, 13B, and 70B sizes. As their size in-
creases the performance of the model increases, and crucially,
so does the amount of memory required to run or train the
model. Even for smaller models like the 7B and 13B variants,
full finetuning is far from possible on our RTX 3090 GPU
that has only 24GB of VRAM. At minimum, full finetuning a
7B parameter model will require 160 GB of VRAM available.
Recent research has aimed to lower this compute barrier with
ideas such as LoRA [22], which can significantly reduce
required memory.

LoRA accomplishes this by reducing the number of train-

able parameters (weights) in the model. Instead of directly
training the full model, LoRA only does gradient updates
on two small low rank matrices. This idea is demonstrated
in Figure 20, after which these low rank matrices, called
adaptation matrices, are combined, and added to the original
weight matrix to update the model. On a 175B parameter
LLM, GPT-3, LoRA can reduce the number of trainable
parameters by 10,000x and memory requirement by three
times. Importantly, the original pre-trained model is fixed, or
frozen, throughout training. At the end of training, these new
matrices can be merged with the existing model providing no
computational overhead at inference time.

Still, finetuning is costly. Using just LoRA to reduce mem-
ory usage is sufficient to enable finetuning on a RTX 3090,
but leaves little excess memory to increase batch size, leading
to long training times. This motivates a derivative of LoRA,
QLoRA [11], that further reduces memory requirements by
using a quantized pre-trained model.

Quantization is a strategy growing in popularity to reduce
the memory footprint of LLMs. It does this by reducing
the number of bits each parameter, or weight, consumes.
Traditionally, weights of a neutral network are stored in fp-
32 precision, which uses 32 bits of memory per individual
weight to maximize the precision of the model. Compressing
this information into smaller bit sizes such as fp-16 or int-
8 is a direct performance efficiency tradeoff. Recent work
suggests that quantized models storing weights in as small
as int-4 retain most of their performance at a substantially
smaller memory size [15] [14]. QLoRA adopts this approach
and proposes a similar strategy to LoRA, but with a 4-bit
quantized pre-trained model.

TABLE V
MEMORY REQUIREMENTS FOR VARIOUS FINETUNING APPROACHES [55]

Method Bits 7B 13B 30B 65B 8x7B
Full 16 160GB 320GB 600GB 1200GB 1000GB
Freeze 16 20GB 40GB 120GB 240GB 200GB
LoRA 16 16GB 32GB 80GB 160GB 120GB
QLoRA 8 10GB 16GB 40GB 80GB 80GB
QLoRA 4 6GB 12GB 24GB 48GB 32GB

As seen in Table V, using QLoRA for finetuning is vastly
more accessible. Given our compute restriction of 24GB
VRAM, using LoRA it is only possible to finetune a 7B
parameter model. Alternatively, using QLoRA it is possible
to finetune either a 7B, 13B, or 30B parameter model. Con-
sidering this, QLoRA is the finetuning strategy selected in this
work.

To finetune LLaMA-2 7B Chat we use the GPT-4 generated
QA-pair dataset discussed previously. The training parameters
can be found in Table VI. When training with either LoRA
or QLoRA, the rank plays a crucial role in determining the
size of the adaptation matrices. As the rank approaches the
overall dimension of the model, LoRA training converges with
that of a full finetune. Determining the optimal rank value is
not straightforward. The LoRA paper suggests increasing rank
does not correspond to the direct increase in performance one



TABLE VI
FINETUNED MODEL PARAMETERS

Parameter Value
LoRA Rank (r) 8
LoRA Alpha (α) 16
LoRA Dropout 0.05
Learning Rate 1e-4
Model Precision 4-bit
Max Length 512
Optimizer Paged AdamW 32Bit
Epochs 3
Batch Size 16

might expect. Instead, smaller values such as 4, 8, and 16 can
often be optimal for training [22]. Importantly, the optimal
rank is heavily dependent on the model itself and the task
being trained, making it difficult to choose. Due to its prevalent
use, the LoRA rank is set to 8 for finetuning LLaMA in this
work, however, future work may consider further optimizing
this parameter.

The alpha α parameter functions similarly to learning rate
since it is a scaling factor for the adaptation matrix in terms
of rank (r). During LoRA training, at each gradient update
the adaptation matrix is scaled by α

r . Only after is the output
of this step merged with the original frozen model. Higher
values of alpha relative to rank will scale the adaptation matrix
more, which effectively makes the model learn quicker. The
inverse is also true, hence the similarity to learning rate.
Popular values of alpha include α = r or α = 2r, with our
implementation using the ladder option with alpha set to 16.
For more information regarding either rank or alpha selection
readers may refer to the LoRA paper [22].

Once the finetuned model is trained, it is quantized to
improve efficiency during runtime, improving the user experi-
ence. We use GPTQ [14] and GGUF [15] for quantization,
which are optimized for GPU and CPU inference, respec-
tively. Both GPTQ and GGUF support k-bit quantization. Like
QLoRA suggests, 4-bit offers a reasonable tradeoff between
efficiency and performance. Considering this, the model is
converted to 4-bit variants of both GPTQ and GGUF mod-
els, and all three models, including non-quantized, are made
publicly available via Hugging Face.

We do not report any issues during training with this dataset.
Improvement on the finetuned model may consider leveraging
new training techniques, such as LoftQ [24] or LoRA+ [19]
to replace QLoRA. Further, additional training techniques
such as RLHF [33] or DPO [37] can be used for additional
preference tuning. Simpler performance enhancements could
include training a larger LLaMA-2 model or implementing
RAG to the finetuned model.

IV. RESULTS AND DISCUSSION

In this section we will discuss and evaluate the results of
each chatbot. The primary focus will be on understanding the
strengths and weaknesses of each method. This section will
conclude with a comprehensive comparison of the methods
using GPT-4 as an evaluator. Throughout, there will be further

Fig. 21. Model training/validation loss plot. The minimum validation loss is
indicated by the vertical line at the 13th epoch.

discussion about the difficulties and implications of each
method it might face in a production application.

A. Scratch Model

The scratch model discussed in this research has been
specifically developed to explore how effective a model built
from the ground up can be in closed domain question answer-
ing. This model starts with no pre-training, unlike large models
that are refined using extensive datasets. By evaluating its per-
formance, we aim to compare the results with those achieved
by either general or finetuned models. This comparison helps
us understand the limitations of starting from scratch versus
using sophisticated models that have been trained on enormous
amounts of data. Through this analysis, we hope to gain insight
into the trade-offs between building models for specific tasks
and adapting large, pre-existing models to new tasks.

Using the architecture and parameters discussed in the
previous section, the scratch model does not face additional
difficulties during training. As demonstrated in Figure 21, the
training and validation loss begins to diverge near the eighth
epoch and continue to further spread apart as time goes on.
This is an indication of overfitting, which can happen in any
machine learning model.

Overfitting happens when the model continues to improve
performance on the training data but worsens on other data,
such as from the real-world. This occurs because the model
hyper fixates on details of the training data that are not
indicative to general success. To monitor how much overfitting
is occurring in the model, it is typically recommended to split
the data into at least two sets to monitor its performance across
training/validation. By splitting the data into distinct groups,
the model can be trained on the training data and evaluated by
the validation data. This idea motivates early stopping, which
allows training to continue while validation loss decreases.

Our results indicate the minimum validation loss exists after
the 13th epoch. This model, saved after 13 epochs, is used as
the final scratch model throughout the results and discussion
section.

The performance of the scratch model varies starkly depend-
ing on what kind of question is asked. We find that the scratch



TABLE VII
SCRATCH MODEL EXAMPLES

# Question Answer
1 Is there a math major at

SUNY Brockport?
Yes, indeed! For Math majors at SUNY Brockport, you have the opportunity to choose Math
majors that you would be [UNK] for the Math major. This is a great way to enhance your
academic skills and prepare for a successful career in the field of Mathematics.

2 Is there an engineering
major at SUNY Brock-
port?

Yes, indeed! For the major major is [UNK], [UNK] [UNK], and [UNK] [UNK] is a [UNK]
[UNK] [UNK] [UNK] that is [UNK] the [UNK] of the [UNK] and [UNK] [UNK]. Its a [UNK]
major that allows students to explore the [UNK] and [UNK] of their careers while still making
a [UNK] [UNK] experience.

3 Tell me about the nursing
major

Absolutely! [UNK] is the chair of the nursing major. [UNK] major, and she would be the perfect
person to talk to about the major and major requirements. Her major is a testament to the quality
of our programs and faculty.

4 How can I get involved in
undergraduate research?

Thats a great question! To get involved in undergraduate research, you can start by reaching out
to your professors or the faculty member for research projects. They can provide a wealth of
research opportunities to guide you through the opportunities that can contribute to the field and
student research opportunities.

5 How can I get involved in
clubs?

Getting involved in clubs is a fantastic way to connect with fellow students! You can get involved
by attending events, attending events, or participating in clubs. To get involved, you can contact
the clubs club to learn more about clubs, organizations, and events. Dont forget to check out
the clubs myBrockport page for upcoming events and clubs to get involved!

6 What options are there for
financial aid at Brockport?

SUNY Brockport offers a variety of financial aid options to help make your education affordable.
You can explore these options to help you fund your studies. You can explore these options and
find the best fit for your studies.

7 How can I report sexual
misconduct?

You can report any concerns by contacting the title ix coordinator for student affairs at SUNY
Brockport by visiting the SUNY Brockport website. There, youll find a report of the title ix
coordinator, which is available to students, faculty, staff, and staff. You can report them through
the report of the title ix coordinator or the title ix coordinator for assistance.

8 Can I get credit for com-
pleting an internship in the
math department?

Absolutely! To get started with an internship, you can earn credit for an internship course. This
is a great way to gain practical experience in Math, Math, Math, Math, Math, Math, Math, Math,
Math, Math, or Math, and Math. Its a fantastic way to gain practical experience!

9 Is there a gym available to
students on campus?

Yes, indeed! We offer a [UNK] [UNK] [UNK] [UNK], which is designed to provide students
with the necessary skills and knowledge to excel in a safe environment.

10 How can I apply to SUNY
Brockport?

Were thrilled to hear youre interested in joining our vibrant community! Applying to SUNY
Brockport is a straightforward process. Simply visit our apply page on the website where you
can find all the necessary information and to submit your application. If you need any assistance
during the process, our admissions team is more than happy to help!

11 What is the meaning of
life?

The life of life at SUNY Brockport is to be [UNK] by the university life office. It includes life
and events, organizations, and events that align with the campus life and community. Its a great
way to make a difference on campus life more affordable and make the most of your college
experience!

model performs unexpectedly well on both questions within
the training dataset, and questions slightly altered from the
training dataset. Expectantly, on rare or untrained questions,
the performance of the scratch model suffers dramatically.

Each of these cases can be found in Table VII, which
contains various scratch model generated answers. None of the
questions found in Table VII are written word-for-word from
the training dataset. However, some questions are like those
found in the training data. Breaking down the performance of
the scratch model, it is clear the scratch model can struggle
to answer coherently to many questions. Generally, when the
scratch model struggles to answer coherently, it is because the
question is either not trained, or does not appear often in the
data. At times, the scratch model exhibits unusual character-
istics, such as in question #8, which repeats the term “Math”
twelve times consecutively. Similarly, for questions such as #2,
and #9, the unknown token [UNK] is also repeated several
times. However, for other questions such as #4, #5, #6, #7,
and #10 the scratch model responds reasonably from a factual
standpoint, albeit with some illogical portions grammatically.
Finally, with vastly different questions such as #11, the scratch
model misses the premise entirely.

This style of performance has both strengths and weak-
nesses. From a strength’s perspective, the scratch model has
impressive performance on questions well defined by the
dataset. Some examples of this include application or financial
aid questions, which appear numerous times in the dataset
with varying styles of writing. For these questions, the scratch
model can respond meaningfully even if a question is phrased
differently than the training data. Weaknesses on the other
hand include the scratch model struggling to answer questions
that appear only a few times in the dataset with uniform
phrasing.

Furthermore, in cases where a question is inquiring about
things Brockport does or does not offer, the scratch model
typically fails to deny. This behavior can be explained similarly
to the Reversal Curse [5] which explains how an LLM trained
on “A to B” fail to learn “B to A”. While this trait also
generalizes to the scratch model, our focus is on the idea
that a language model trained to learn “A” fails to learn “not
A.” This particularly impacts questions like #2 from Table
VII, which is inquiring about an engineering major. SUNY
Brockport, as of March 2024, does not have an engineering
major. As such, there is no reference to engineering on the



website, and therefore there is also no reference to engineering
in the QA-pair dataset the scratch model is trained on. So,
when the scratch model is given a question about engineering,
it does not understand to say no, SUNY Brockport does
not offer an engineering major. However, the scratch model
does understand that question #2 looks semantically similar
to question #1, which is inquiring about a math major that
SUNY Brockport does offer. This is crucial, since there are
many questions like #1 which indicate “yes, SUNY Brockport
has XYZ”. So, when confronted with these abnormal questions
such as about engineering, the scratch model will respond
yes as well. Typically, in questions like this the scratch
model response also derails and loses coherence, however,
understanding this concept has critical implications.

Practically, the scratch model does not understand what
SUNY Brockport has to offer. In an application, this will
lead to misinformation for users of the scratch model. More
importantly, from a liability and ethical perspective, there exist
other issues with the scratch model due to this flaw. Most
significantly, is that because the scratch model has not been
trained to deny, it typically will endorse criminal activity,
failing classes, or other things disagreeing with SUNY Brock-
port’s mission. While these issues are to be expected given
the training of the scratch model, they also illuminate key
issues with chatbot systems, requiring additional moderation
or training to take place. Future work may consider exploring
these avenues to better align the scratch model with SUNY
Brockport.

Despite these issues, the scratch model exceeds our ex-
pectations. Recently, due to the performance of LLMs like
GPT-4 [32] and LLaMA [47], large models trained on vast
mounds of data are the norm. Because of this, the scratch
model is expected to be weak. Unlike an LLM like LLaMA
which was trained using 2048 A100 GPUs (approximately
$30M as of March 2024 at an estimated 15k per GPU) for
approximately 21 days, the scratch model is trained using
a single RTX 3090 GPU ( $700 as of March 2024) for 16
minutes. Considering this, we anticipated the scratch model
would struggle responding to even the most straightforward
queries. Remarkably, despite these initial expectations, the
scratch model displays remarkable performance considering
its fundamental difficulties.

Even considering these intrinsic issues of scratch model,
there is further room for improvement. Adjusting the vo-
cabulary size to better enable the scratch model to respond,
and increasing its size and duration of training will likely
further improve performance of the scratch model. However,
outside of hardware bottlenecks, further improvement could
be achieved by crafting a more focused dataset that contains
more relevant questions and answers to the target audience.

Overall, the scratch model challenges the conventional wis-
dom that high-performance generative models are unattainable
without massive datasets and computing power. Typically,
the creation of a capable model, even within a narrowly
defined domain, is a daunting task that requires significant
resources. However, our scratch model serves as a fundamental

Fig. 22. Training loss of Finetuned model

benchmark, offering a glimpse into the baseline capabilities
of a chatbot-driven language model. Importantly, while the
scratch model has exceeded our initial expectations, it is
still not suited for an end-to-end system due to its frequent
inaccuracies and tendency to derail on specific questions.

B. Finetuned Model

The finetuned model is a more popular approach recently.
By leveraging the performance of pretrained LLMs, the fine-
tuned model does not fall prey to many of the same issues
as the scratch model. In this section, we will discuss the
performance of the finetuned model, including some of its
strengths and weaknesses. Additionally, we will discuss the
issue of hallucination in LLMs and how it is portrayed by the
finetuned model.

Using the architecture and parameters discussed in section
III-D, the finetuned model finetuned model does not face
additional difficulties throughout its training. This is illustrated
in Figure 22, which displays a consistently decreasing training
loss. Outside of the training, the finetuned model exhibits
impressive performance across a variety of inquiries.

The finetuned model leverages the extensive knowledge
embedded in pretrained LLMs, allowing it to achieve su-
perior performance. Table VIII displays this capability, with
the finetuned model appearing to provide accurate, coherent,
and contextually appropriate responses to a diverse set of
questions. Unlike the scratch model, which struggled with
rare or untrained queries, the finetuned model demonstrates
a remarkable adeptness at managing such challenges. This
proficiency can be attributed to its exposure to a vast amount of
information during the pretraining phase, enabling it to draw
on a wider range of data when generating responses. This is
particularly important for handling questions like #11, which
do not appear at all throughout training. Unlike the scratch
model, which struggles immensely, the finetuned model can
create a well-crafted response. Importantly, while well-crafted,
whether BrockportGPT should have the capability to answer
such questions is a key point of discussion. While the finetuned
model exhibits excellent performance, the details leave much
to be desired.



TABLE VIII
FINETUNED MODEL EXAMPLES

# Question Answer
1 Is there a math major at

SUNY Brockport?
Yes, indeed! SUNY Brockport offers a Bachelor of Science degree in Mathematics with a
variety of specializations. You can choose from tracks like Applied Mathematics, Computational
Mathematics, and Secondary Education, among others. It’s a fantastic way to develop your skills
and prepare for a career in mathematics.

2 Is there an engineering
major at SUNY Brock-
port?

Yes, indeed! SUNY Brockport offers a Bachelor of Science in Engineering (BSE) degree with
concentrations in Chemical, Civil, Electrical, Mechanical, and Computer Engineering. It’s a
fantastic program for those interested in hands-on learning and problem-solving.

3 Tell me about the nursing
major

The nursing major at SUNY Brockport is designed to prepare students for a rewarding career in
healthcare. With a strong focus on clinical practice, our program provides hands-on experience
through partnerships with local hospitals and healthcare facilities. You’ll graduate ready to take
on leadership roles in nursing and contribute to improving patient care.

4 How can I get involved in
undergraduate research?

Getting involved in undergraduate research at SUNY Brockport is an excellent way to enhance
your academic experience! You can start by talking to your professors about potential research
opportunities. They may have projects available or be able to connect you with other faculty
members who are conducting research in areas that interest you. Additionally, the Office of
Undergraduate Research and Creative Activities (OURCA) offers resources and support to help
you find the right fit.

5 How can I get involved in
clubs?

Getting involved in clubs at SUNY Brockport is easy! You can check out our Clubs &
Organizations page on the website to see all the options available. Many clubs have open meetings
where you can come and learn more about them. Don’t be afraid to reach out to club members
or advisors for more information. They’re always eager to welcome new members!

6 What options are there for
financial aid at Brockport?

At Brockport, we understand the importance of financial support for students. We offer various
forms of financial aid including scholarships, grants, loans, and work-study programs. Our
Financial Aid Office is dedicated to helping you find the best options for your needs. They
can assist with completing the Free Application for Federal Student Aid (FAFSA) and provide
guidance on how to apply for different types of aid. Don’t hesitate to reach out if you need
assistance!

7 How can I report sexual
misconduct?

If you have experienced sexual misconduct, we encourage you to report it immediately. You can
reach out to the Title IX Coordinator at (585) 395-2416 or email them at titleix@brockport.edu.
They will provide you with support and guide you through the reporting process. Remember,
you are not alone, and there are resources available to help you.

8 Can I get credit for com-
pleting an internship in the
math department?

Absolutely! You can earn up to six credits by completing an internship with a math-related
organization. This is a fantastic opportunity to gain real-world experience and apply what you’ve
learned in the classroom to a professional setting.

9 Is there a gym available to
students on campus?

Absolutely! Students have access to the Fitness Center located in the Student Union Building.
It’s equipped with state-of-the-art equipment and offers a variety of exercise classes. Plus, it’s
free for all students!

10 How can I apply to SUNY
Brockport?

Applying to SUNY Brockport is easy! You can start by visiting our website at brock-
port.edu/apply. From there, you’ll find all the necessary steps to submit your application. We
look forward to reviewing your application and welcoming you to our vibrant community!

11 What is the meaning of
life?

The meaning of life is a question that has puzzled philosophers and scholars for centuries.
At SUNY Brockport, we encourage students to explore their own beliefs and values through
courses like PHIL 105: Introduction to Philosophy. This course helps students develop critical
thinking skills and understand various perspectives on what gives life meaning. It’s an excellent
opportunity to reflect on your personal beliefs and how they align with different philosophical
views!

One notable challenge of current LLMs, including the
finetuned model, is the phenomenon of model hallucination.
Model hallucination is a term used to describe model responses
that are coherent and grammatically correct yet are factually
incorrect or misleading. This issue is particularly concerning
applications that rely on factual accuracy, such as educational
tools or information dissemination platforms. For example, a
query about the first president of the United States receiving
a response that inaccurately names John F. Kennedy instead
of George Washington illustrates the potential for misinforma-
tion. In the context of our finetuned model, hallucination takes
many forms.

Like the scratch model, for questions about services or pro-
grams SUNY Brockport does or does not offer, the finetuned
model typically fails to respond correctly. This is illustrated
once again in question #2 of Table VIII, which asks whether

SUNY Brockport has an engineering major. The finetuned
model, like the scratch model, incorrectly claims there is an
engineering major offered at SUNY Brockport. Not only does
the finetuned model make this claim, but it further claims there
are four concentrations within this non-existent major. Blatant
examples of model hallucination like this occur across a wide
range of questions. While this specific case of services SUNY
Brockport does or does not have comes down to the dataset
creation, there are other examples of model hallucination as
well. For example, questions #1, #4, #7, #9, and #11 all
suffer some form of model hallucination. Question #1 correctly
identifies there is a Math major at SUNY Brockport, but
incorrectly claims there are concentrations in applied math,
computational math, or secondary education. Question #4 is
good, however towards the end it directs the user to “Office of
Undergraduate Research and Creative Activities (OURCA)”,



TABLE IX
PERFORMANCE BEFORE/AFTER FINETUNING

Question: “How can I get involved in undergraduate research?”
Model Type Response
Finetuned Model Getting involved in undergraduate research at SUNY Brockport is an excellent way to enhance

your academic experience! You can start by talking to your professors about potential research
opportunities. They may have projects available or be able to connect you with other faculty
members who are conducting research in areas that interest you. Additionally, the Office of
Undergraduate Research and Creative Activities (OURCA) offers resources and support to help
you find the right fit.

LLaMA-2 7B Chat The undergraduate research department at State University of New York at Brockport (SUNY
Brockport) is called the Office of Undergraduate Research and Creative Activities (OURCA).
OURCA provides opportunities for undergraduate students to engage in research, creative
projects, and other forms of scholarly activity under the guidance of a faculty mentor... etc.

which does not exist. Question #7 is strong, except for the
hallucinated communication information, including an incor-
rect phone number and email address. Interestingly, both the
phone number and email address appear reasonable, with a
(585) 395-XXXX style phone number that SUNY Brockport
uses and brockport.edu email address. Nonetheless, both are
made up, with no reference to either anywhere on the website.
Question #9 incorrectly states there is a gym available in the
student union building, when the gym is in fact located in the
SERC. Question #11, as previously discussed, is a question
untrained from the dataset. The finetuned model response is
well written, except for a minor detail suggesting the user look
at the class “PHIL 105: Introduction to Philosophy”. At SUNY
Brockport, Introduction to Philosophy has course code PHL
101, not PHIL 105.

Mistakes like this are common with the finetuned model,
and it is easy to understand why. The finetuned model is
a pre-trained model, meaning it has already undergone a
significant amount of training. Finetuning, especially with
parameter efficient methods on limited data and compute is
unlikely to vastly change the underlying information. This is
illustrated in Table IX, which pins question #4 against both
the finetuned model, and its underlying pre-trained model,
LLaMA-2 7B Chat. Crucial here is that both the finetuned
model and the pre-trained model reference the “Office of
Undergraduate Research and Creative Activities (OURCA).”
This implication affects all areas of the finetuned model and is
a key reason hallucination occurs. Unfortunately, this specific
point is an intrinsic issue of current LLMs that has little to do
with our training methodology.

While imperfect, the finetuned model maintains a high
overall utility. Expectedly, the performance of the finetuned
model vastly exceeds that of the scratch model and is overall
quite capable. As discussed, the finetuned model also faces
numerous difficulties, both fundamental in nature, and be-
cause of our training methodology. Future work may consider
improving the methodology by focusing on new ways to
craft the dataset. Additionally, scaling the finetuned model
to larger sizes, or more performant models may also result
in improvement. Next, we will discuss Retrieval Augmented
Generation (RAG), which is a cornerstone topic to this project.

C. Retrieval Augmented Generation

Recall there are three information retrieval (IR) strategies
discussed in the methodology: semantic search, semantic
search with a re-ranker model, and hybrid semantic/keyword
search. Combined with their integration into the question
topic classifier, there is a total combination of six distinct
strategies for IR. In this section we will discuss both the
efficiency and performance of each of these strategies. Finally,
this section will conclude with a comprehensive comparison
of each retrieval strategy and determine what is the most
performant RAG configuration.

Efficiency is a key component of any IR system that needs
to be accessed in real time. Of the methods used in this
work, semantic search is the fastest averaging approximately
65ms to return a response. Next, semantic search with the
re-ranker averages approximately 228ms. Finally, the hybrid
retrieval strategy has a wide range of search times, from 25ms
to 500ms, which is caused by our implementation of hybrid
retrieval leveraging OpenAI’s text-embedding-ada-002 model
via an API instead of being completely local. Interestingly, the
question classifier reduces the average time to retrieve results
by 40ms for semantic search with and without the re-ranker.
We expect this to occur since the question classifier directly
reduces the search space for queries, which can vastly reduce
the number of similarity scores computed.

Regarding the question classifiers, their performance ap-
pears strong. Figure 23 validates this with their loss plots,
which seem to indicate the classifiers have some predictive
ability. Their accuracy, dictated by whether the classifier
strictly predicts accurately on testing data is 71.17%, 79.29%,
73.46%, 83.28%, and 74.22% for the main category, ‘about’
subcategory, ‘academics’ subcategory, ‘life’ subcategory, and
‘support’ subcategory, respectively. While strong, these accu-
racy numbers are not convincing enough to be used alone,
which motivates the wrapper discussed previously to intel-
ligently route questions based on their probability output
from the question classifiers. Importantly, the question topic
classifiers created here may not be the most effective architec-
turally. Further exploration with traditional machine learning
methods such as random forest, SVM, or XGBoost may boost
performance further.

Regarding performance, our evaluation consists of putting



Fig. 23. Showcase of removed irrelevant data. Left is a 2024 academic calendar. Right is a similar academic calendar from 2010. This shows how similar
webpages can look whilst containing quite different information.

all six IR strategies in head-to-head matchups where GPT-4
will evaluate who the best player is. These results are used to
determine what is the best combination of strategies for IR.
Crucially, this is a fundamentally flawed strategy since GPT-
4 is an imperfect evaluator. Ideally, model evaluation should
occur over many human evaluations of the model’s responses.
However, considering that difficulty, using GPT-4 has become
a common approach recently for model evaluation.

Creating a suitable evaluation dataset is non-trivial. There
are two main datasets available to us for evaluation: the
training data and the testing data. Traditionally, the testing
data exists for the purpose of evaluation. However, in this
context we claim evaluating on the testing dataset solely may
misrepresent the true ability of both the scratch model and
finetuned model. Traditionally in machine learning, the train-
ing data should prepare the model with everything required
to make a sound prediction. This makes evaluating with test
data that is separate from training a very natural extension.
However, in our context, the training and testing data do not
necessarily have overlap. This is due to the nature of dataset
creation. For any question, it may in fact be the only instance
of that question inside the dataset. This is a fundamental
shortcoming of our dataset, and one that should be considered
for improvement in the future. However, considering the nature
of the dataset, it does not make sense to try and evaluate the
scratch model or finetuned model strictly from the testing data.
This is because these models should not be able to answer
many questions from the test set. This is a critical issue of
both the scratch and finetuned models, but it does not tell
a full picture of their ability. These models have still seen a

Fig. 24. Question rephrasing prompt

vast number of questions related to SUNY Brockport, covering
a sizable portion of questions a user could reasonably ask.
If these questions can be answered, then the model can still
provide a positive utility to an end user. Considering this, our
evaluation dataset is created by using both testing data and
modified training data.

The goal of evaluation using this method is to consider both
what happens with the models see unknown questions, while
still considering questions within the training data that are
phrased differently. Questions are rephrased using GPT-3.5 and
the prompt described in Figure 24. Using this strategy our
evaluation dataset is created by combining all 1,345 testing
questions with 1,000 randomly selected rephrased questions
from the training data. This evaluation dataset is used both
for evaluating RAG configurations as well as evaluating all
the methods described in this research.

The prompt used for evaluation with GPT-4 is given in
Figure 25, with the appropriate values substituted in for a, b,
c, and d. In this context, the question is the incoming inquiry
from the evaluation data, and the ground truth is the answer for
that question. Player A and B matchups are sampled randomly,
with the only condition being they cannot be equal. Following



TABLE X
RAG MODEL EXAMPLES USING HYBRID SEARCH

# Question Answer
1 Is there a math major at

SUNY Brockport?
Yes, there is a math major at SUNY Brockport.

2 Is there an engineering
major at SUNY Brock-
port?

I’m sorry, I don’t know.

3 Tell me about the nursing
major

The Nursing Major at SUNY Brockport provides students with the knowledge, behaviors, and
skills needed for nursing practice at the baccalaureate level. The program emphasizes critical
assessment, diagnosis, and treatment skills through clinical rotations. Upon acceptance, students
transition from ”Nursing Intent” to Nursing Major status, receiving guidance in transfer credits,
advisement, and registration. Advanced Practice Nurses are in high demand in major health
systems and community organizations in the region. Admission to the DNP program considers
academic requirements and professional demands for a systems leadership role.

4 How can I get involved in
undergraduate research?

You can get involved in undergraduate research at SUNY Brockport by working closely with
a faculty mentor on scholarly or creative projects related to your major. Reach out to the
Scholarship, Research & Sponsored Programs Office for more information and opportunities
available for undergraduate research.

5 How can I get involved in
clubs?

To get involved in clubs at SUNY Brockport, you can visit the myBROCKPORT page to explore
different clubs and their activities. Attend club meetings, participate in events, and consider taking
on leadership roles to develop your skills and contribute to the club’s success.

6 What options are there for
financial aid at Brockport?

At SUNY Brockport, students have opportunities to receive scholarships, grants, loans, and
employment as part of their financial aid package. The Financial Aid Office assists students in
obtaining the necessary financial resources to attend the university.

7 How can I report sexual
misconduct?

You can file a report online about incidents of sexual misconduct using our Gender-Based and/or
Sexual Assault Report. You can choose to remain anonymous if you prefer. Remember, everyone
should have access to reporting options and support services, even if they do not wish to formally
report an incident.

8 Can I get credit for com-
pleting an internship in the
math department?

Yes, you can receive credit for completing an internship in the math department at SUNY
Brockport.

9 Is there a gym available to
students on campus?

Yes, SUNY Brockport has a gym available to students on campus.

10 How can I apply to SUNY
Brockport?

To apply to SUNY Brockport, you can submit the SUNY Application or Common Application
for admission. Once admitted, complete any additional requirements specific to your program
or interest, such as applying for scholarships, the Honors College, or certification programs.
Remember to also complete the FAFSA for financial aid consideration.

11 What is the meaning of
life?

I’m sorry, I don’t know.

Fig. 25. GPT-4 head-to-head evaluation prompt

the matchup construction, GPT-4 selects the preferred response
for each head-to-head.

Inspecting the results, 47.12% of the evaluations responded
“None,” which indicates either the models performed identi-
cally or incorrectly. Gauging which of these cases is difficult,
however, from our manual exploration most cases occur from
both players responding incorrectly.

Excluding “None” cases, the results where GPT-4 selected
one of A or B are given in Table XI. In this table, higher
win rate (WR) is better, and N indicates the number of

TABLE XI
HEAD-TO-HEAD RAG TEXT RETRIEVAL RESULTS

Search Types Classifier Win Rate 95% CI N
Semantic False 53.00% [48.11, 57.89] 400
Semantic True 45.01% [39.95, 50.08] 371
Rerank False 48.68% [43.66, 53.71] 380
Rerank True 37.23% [32.6, 41.86] 419
Hybrid False 55.82% [51.3, 60.34] 464
Hybrid True 58.52% [53.95, 63.09] 446

times this configuration played in head-to-head matches. The
results indicate compelling evidence for the performance of the
hybrid search model with the topic classifier. This method not
only achieved the highest WR but also displayed significant
statistical confidence, as evidenced by the calculated 95%
confidence intervals. Crucially, while this method achieves the
highest WR, there is some degree of statistical uncertainty
in the results. Specifically, there is not statistically significant
evidence that the true WR of hybrid search is greater than
those of either hybrid or semantic search without the topic
classifier. This is easily seen by the lower bound of hybrid
search with the topic classifier, which is 53.95% being less
than the upper bounds of either hybrid or semantic search



without the topic classifier, which are 60.34% and 57.89%,
respectively.

TABLE XII
PERCENTAGE OF “NONE” RESPONSES IN HEAD-TO-HEAD RESULTS

Search Types Classifier % None 95% CI N
Semantic False 49.43% [45.95, 52.92] 791
Semantic True 51.12% [47.56, 54.68] 759
Rerank False 51.72% [48.22, 55.21] 787
Rerank True 47.76% [44.3, 51.21] 802
Hybrid False 41.64% [38.21, 45.06] 795
Hybrid True 41.01% [37.5, 44.51] 756

To further discuss the results, excluding “None” cases
has implications for the WR displayed in Table XI. It is
possible certain configurations could be advantaging from
this evaluation strategy by either responding excellently or
missing entirely. Such a strategy would create an artificially
high WR, dodging the point of evaluation. While these biases
should disappear as more samples as taken, the distribution of
“None” responses across various search types is nonetheless a
valuable metric to observe. Considering this, the corresponding
percentage of “None” results for each configuration is given
in Table XII. In this table, fewer “None” responses implies
the model can answer a broader range of question. From these
results, it is clear the hybrid retrieval strategy is again the most
performant configuration, verifying the strong performance in
Table XI. This is further evidenced by the 95% confidence
interval, which indicates an upper bound of 44.51% “None” re-
sponses for hybrid search using the topic classifier. This upper
bound is less than the lower bound CI for either of the semantic
search methods, or re-ranking with the topic classifier, all of
which indicates statistical significance. The exception to this
rule is re-ranking whilst using the question classifier, which
has a lower bound marginally beneath the upper bound in
question. While important, the overlap is not large enough
to be meaningful in our results. The question topic classifier
appears to again have mixed performance depending on which
search strategy is used. For hybrid search, the question topic
classifier does not appear to make a significant difference in
performance.

Through these results, the re-ranker typically performs the
worst of the search strategies. We do not have an explana-
tion for this behavior. Follow-up work to this may consider
exploring why this is the case. Improvements could be found
by using a more performant re-ranker model, or even fine-
tuning a re-ranker model to best optimize its performance for
BrockportGPT.

Nonetheless, based on this evidence, we conclude hybrid
search, which uses semantic and keyword search, is the best
configuration of those assessed. Further, despite the statistical
uncertainty, we assume hybrid search using the question topic
classifier to be the most performant RAG configuration due
to its slight edge over its counterpart without the classifier
in overall performance indicated by both Tables XI and XII.
Following this decision, hybrid search with topic classification
is the configuration used as the RAG benchmark for comparing

all three methods discussed in this research.
To better understand the capability of RAG, Table X dis-

plays the same questions used to discuss the scratch and
finetuned models, answered by RAG using the configuration
discussed prior. Looking at these responses, it is clear RAG
is an effective method. Overall, when compared to the scratch
and finetuned models RAG is typically more direct and accu-
rate. This comes at the cost of the conversational feeling the
scratch and finetuned models have that may provide a more
engaging user experience. This style is easily evidenced by
questions #1, #8, and #9, where RAG answers more accurately
than the finetuned model but with a less welcoming response.
Crucially, this behavior may be adjustable through additional
prompt tuning.

Outside of the styling of answers, one major benefit of RAG
is its ability to understand what it does and does not know.
Since in its prompt, GPT-3.5 is given instructions to only use
the provided context as knowledge, for questions which do
not retrieve relevant information RAG will refuse to respond.
This has several benefits and drawbacks. For questions like #2,
which ask if SUNY Brockport offers an engineering major, the
scratch and finetuned models both mistakenly claim there is an
engineering major offered. This is a fundamental issue of the
QA dataset generation. Since engineering does not appear on
the SUNY Brockport website, neither does it appear in any
of the training questions, resulting in issues the scratch and
finetuned model not knowing the extent of offerings at SUNY
Brockport. While the scratch and finetuned models suffer from
this fault, RAG uses this to its advantage. During text retrieval,
for questions about engineering, or other offerings SUNY
Brockport does not provide, there will be no relevant matches.
For RAG, this means GPT-3.5 will respond “I’m sorry, I don’t
know” as opposed to hallucinating a program that does not
exist. Additionally, this feature allows RAG to deny questions
unrelated to SUNY Brockport like in question #11. While this
is a strong benefit of RAG, it also means the text retrieval
system must have exceptional performance, since if not, RAG
will frequently respond “I’m sorry, I don’t know” in cases
where the scratch or finetuned model can respond accurately.

Overall, RAG does very well. For every question in Table
X, RAG gives a reasonable answer, be it a justified refusal,
or a well written accurate answer. Questions #4-7 and #10
especially demonstrate the impressive performance of RAG,
where each of these responses are free of any inaccuracies,
unlike the scratch or finetuned models which each had various
hallucinated or otherwise inadequate responses to some of
these questions.

In conclusion, RAG is a strong method when discussing
BrockportGPT. In addition to its excellent performance as
a chatbot, RAG also enables transparency in how responses
are made that the scratch and finetuned models do not offer.
RAG has several areas for improvement, from text retrieval
broadly, to architecturally as well. As LLMs become better
at interpreting larger contexts, the need for highly specialized
RAG, like this, decreases significantly. This is directly tied to
how RAG works. As discussed here, we only send the top



Fig. 26. Method WRs in head-to-head matchups

five chunks of data from the IR step to the LLM. If these
five are not relevant, then RAG struggles. However, as we
approach a future where LLMs are capable of handling longer
contexts with reliability, it may become increasingly common
to send vast amounts of data to the LLM for RAG systems.
The key issue for this approach is whether the LLM will detect
small facts inside massive amounts of text. Recently, this has
been called the needle in a haystack problem, with exceptional
models like GPT-4 Turbo performing well [17]. Ideally, we
would assess this idea here, but large prompts are expensive,
relegating this idea to future work. In addition to improving
RAG architecturally, future work may be done to improve
the IR process such as implementing different or finetuned
embedding or re-ranker models. Next, we will discuss the
overall method comparison, where we will decide what is the
best of the three strategies discussed throughout this work.

D. Comparison

To compare the three methods seen throughout this work,
we use the same strategy used to determine the best RAG
search method with head-to-head matchups that are evaluated
by GPT-4. The key difference now is that all methods are eval-
uated on the full dataset rather than using sampling techniques
that inject additional statistical uncertainty into the results.
This is cost prohibitive to do when comparing many factors,
like was the case in RAG, but in comparing only three methods
it is possible. This is being done to ensure the robustness of
our overall results.

From the outset, there is a clear winner when concerning
win rate (WR) against one another. This is demonstrated in
Figure 26, which has the Finetuned model (76.98% WR)
beating both RAG (69.68% WR) and the scratch model
(3.63% WR). Crucially, this is the WR when excluding any
“None” responses by GPT-4, which indicate either a tie or
both methods in the head-to-head failing to answer correctly.
Interestingly, there does not appear to be any meaningful
correlation between the number of “None” responses and any

of the three methods. In this evaluation, 18.59% of head-to-
heads resulted in “None.” Breaking it down by method, in
head-to-heads including the finetuned model this number is
19.52%. For the scratch model, this number is 18.34%, and
for RAG is 17.91%. Since these numbers are all close to the
mean, we do not find them significant.

Another point of interest in these evaluations is weighing
the effect of refusals. As discussed previously, neither the
scratch nor finetuned models have a good ability to refuse user
inquiries. This ability is primarily evident in RAG, where the
model refuses inquiries where the retrieval step did not find
relevant information. This is preferred behavior and should
not be punished in evaluation. In head-to-head evaluations
however, GPT-4 typically prefers an inaccurate answer over
a refusal. When removing refusals, which RAG generated
506 of, these WRs move closer but do not shift dramatically.
The finetuned model WR decreases from 76.98% to 75.99%,
RAG increases from 69.68% to 72.85%, and the scratch model
decreases from 3.63% to 2.99%. These shifts while interesting
do not change the overall ranking of models since there is still
statistically significant evidence that the finetuned model has
a greater WR than RAG.

Still, evaluating models is difficult. Unlike other more
traditional machine learning domains, closed domain question
answering does not have a straightforward way to evaluate per-
formance. Understanding this is easy: for any given question,
there are tens to hundreds of ways an answer can be phrased,
yet all being completely valid. Good or bad responses then
become difficult to parse. Shy from human evaluation which
would be a long and tedious process, the GPT-4 evaluated
head-to-head is the best option available. It is not without
flaws though. Through our own exploration of the evaluated
results, GPT-4 typically chooses the better response, but there
are some cases where GPT-4 selects a blatantly incorrect
response. It is difficult to quantify this without unbiased human
evaluation.

Considering this, we take a broad strokes interpretation of



these results. In the end, we consider the finetuned model
and RAG roughly equivalent in their overall ability, but each
excelling in different areas. While the finetuned model excels
in broad questions, it struggles in the details. Additionally,
stylistically, the finetuned model is the best of all methods
since it consistently responds in an enthusiastic and upbeat
manner. On the other hand, RAG does better in the de-
tails, but frequently gets confused or misses the point of a
question when the retrieval mechanism fails to find relevant
information. Considering this, future work may consider a
combination of RAG and finetuning to both ensure stylistically
effective and correct responses.

V. CONCLUSION

This thesis has demonstrated the effective application of
closed-domain question-answering techniques within an insti-
tutional setting, specifically tailored for SUNY Brockport. The
developed chatbot, BrockportGPT, integrates advanced NLP
strategies, including training a model from scratch, fine-tuning
LLaMA, and implementing retrieval-augmented generation
(RAG) to enhance the specificity and relevance of responses to
user queries. Through meticulous data preparation, innovative
methodology, and rigorous testing, BrockportGPT has signif-
icantly improved the accuracy and efficiency of institutional
question-answering systems.

During the development and implementation of Brock-
portGPT, several challenges were encountered. One of the
primary difficulties was the collection and preparation of a
high-quality dataset specific to SUNY Brockport. This process
involved extensive web scraping, cleaning, and using GPT-
4 to synthesize question-answer pairs, which was both time-
consuming and expensive. Another challenge was the limited
compute available throughout this project, which constrained
our ability to finetune larger LLMs or train a more extensive
scratch model. Additionally, the lack of a straightforward eval-
uation metric for closed-domain question answering presented
a challenge, as traditional metrics are unable to accurately
compare the methods, leading to uncertainty in our results.

The potential for further refinement and application of these
techniques suggests a promising direction for future research.
Exploring the types of inquiries users of BrockportGPT are
likely to ask can enable the creation of a more targeted
dataset, resulting in a more effective chatbot. Combining RAG
and finetuning could ensure stylistically effective and accurate
responses. Additionally, exploring alternative retrieval strate-
gies and improving the datasets used, such as implementing
different or finetuned embedding or reranker models, could
further enhance performance. Another area of future research
is the integration of more advanced refusal mechanisms to
better handle irrelevant or unanswerable queries. Furthermore,
investigating the scalability of the chatbot and its application
to other institutional settings can provide broader insights and
potential benefits.

Overall, this work sets a robust foundation for the continued
evolution of AI-driven educational support tools, promising to
augment the accessibility and quality of information across

academic environments. By adapting innovative AI technolo-
gies to specific real-world contexts, this research provides a
model that other institutions can replicate and adapt, contribut-
ing to the broader field of educational AI applications.
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